All categories
caret-down
cartcart

Bayesian Modeling of Uncertainty in Low-Level Vision (The Springer International Series in Engineering and Computer Science, 79, Band 79)

 
Bayesian Modeling of Uncertainty in Low-Level Vision (The Springer International Series in Engineering and Computer Science, 79, Band 79)

Description

Vision has to deal with uncertainty. The sensors are noisy, the prior knowledge is uncertain or inaccurate, and the problems of recovering scene information from images are often ill-posed or underconstrained. This research monograph, which is based on Richard Szeliski's Ph.D. dissertation at Carnegie Mellon University, presents a Bayesian model for representing and processing uncertainty in low­ level vision. Recently, probabilistic models have been proposed and used in vision. Sze­ liski's method has a few distinguishing features that make this monograph im­ portant and attractive. First, he presents a systematic Bayesian probabilistic estimation framework in which we can define and compute the prior model, the sensor model, and the posterior model. Second, his method represents and computes explicitly not only the best estimates but also the level of uncertainty of those estimates using second order statistics, i.e., the variance and covariance. Third, the algorithms developed are computationally tractable for dense fields, such as depth maps constructed from stereo or range finder data, rather than just sparse data sets. Finally, Szeliski demonstrates successful applications of the method to several real world problems, including the generation of fractal surfaces, motion estimation without correspondence using sparse range data, and incremental depth from motion.

Product details

EAN/ISBN:
9781461289043
Edition:
Softcover reprint of the original 1st ed. 1989
Format:
Illustriert
Medium:
Paperback
Number of pages:
220
Publication date:
2013-10-04
Publisher:
Springer
Manufacturer:
Unknown
EAN/ISBN:
9781461289043
Edition:
Softcover reprint of the original 1st ed. 1989
Format:
Illustriert
Medium:
Paperback
Number of pages:
220
Publication date:
2013-10-04
Publisher:
Springer
Manufacturer:
Unknown

Shipping

laposte
The edition supplied may vary.
Currently sold out